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ABSTRACT

Designing engineering objects requires many engineers' knowledge from different domains.

There needs to be cooperative work among engineering designers to complete a design.

Revisions of a design are time consuming, especially if designers work at a distance and with

different design description formats. In order to reduce the design cycle, there needs to be a

sharable design description the engineering community, which can be electronically

transportable. Design is a process of integrating that is not easy to define definitively. This paper

presents Design Script which is a generic engineering design knowledge representation scheme

that can be applied in any engineering domain. The Design Script is developed through

encapsulation of common design activities and basic design components based on problem

decomposition. It is implemented using CLIPS with a Windows NT graphical user interface. The

physical relationships between engineering objects and their subparts can be constructed in a

hierarchical manner. The same design process is repeatedly applied at each given level of

hierarchy and recursively into lower levels of the hierarchy. Each class of the structure can be

represented using the Design Script.

INTRODUCTION

Design is a fundamental purposeful human activity with a long history. Design can include

creative artistic and engineering components. Knowledge-based design systems deal with factors

that tend to be limited to the engineering aspects of design. Many researchers have developed

knowledge-based engineering design systems. Man.y of these systems were developed for the

specified design domain using their own unique problem solving method [2, 5, 9, 12, 21 ]. Some

have tried to develop domain independent knowledge-based design systems. The DIDS (Domain

Independent Design System) by Runkel [18] was developed as set of tools that can provide a

configuration-design system from a library. DOMINIC [10] treats design as best-first search by

focusing on the problem of iterative redesigning of a single object. GPRS (Generative Prototype

Refinement Shell) was developed by Oxman [15], which used Design Prototype [8, 22] as a

knowledge representation. In the real world, most engineering designs are so complex that a

single individual cannot complete them without many other engineers' help. Cooperation

between different engineering designers is not a simple process because each designer may have

a different perspective for the same problem, and multiple revisions of a design are needed in

order to finish a project. Designers may have different interpretations of the same design value

or may want to access special programs to determine values for the design variables in which

they are interested. In order to achieve the above goals, there needs to be a design knowledge
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representation that can be shared between designers and that can be modified to the designers'

needs. In addition, if a designer needs to execute a special program, the design system should

provide a scheme to do so. This paper describes a Design Script as an abstract model of the

design process that is based on hierarchical design structure and shows how to capture design

knowledge and integrate data and tools into a knowledge based design system.

MODELS OF DESIGN PROCESSES

Dieter [7] describes the design process in his book as follow: "There is no single universally

acclaimed sequence of steps that leads to a workable design." But it is possible to make the

fundamental design process as simple as an iterative process of analysis, synthesis, and

evaluation (Fig. 1). Analysis is required to understand the goals of the problem and to produce

explicit statements of functions. The synthesis phase involves finding plausible solutions through

the guidance of functions that are produced from the analysis phase. The evaluation process

checks the validity of solutions relative to the goals. The evaluation phase can be divided into

two different types of jobs. One is to compare the solution with existing data if the solution is

composed of comparable data; and the other is to compare the solution values derived from the

current design solution through simulation process executions with the given goals.

Analysis Compare

\ T /Synthesis Calculation

Fig. 1. Goal, Function, Form and Behavior Relationship

Problem decomposition is a well-known problem solving strategy in knowledge-based design

systems. Once a complex design problem (a complete object) is decomposed into simple design

problems (subparts), it is much easier to handle. The engineering design object is considered as

being composed of sub-parts in a hierarchical structure. In other words, the problem of designing

a complete object is comprised of designing number of subparts recursively until the designing

process reaches the elemental subparts. The extent and complexity of a design problem can be

different at different levels of hierarchy, but the identical design process can be applied at all
hierarchical levels.
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DESIGN SCRIPT

The DS (Design Script) is presented in this paper as an engineering design knowledge

representation scheme. The DS is implemented in COOL (CLIPS Object Oriented Language) of

NTCLIPS which is a Windows-NT version of CLIPS developed by the authors [20]. The

common design process which is composed of analysis, synthesis, and evaluation phases can be

abstracted by encapsulating design activities, such as goal decomposition and invoking methods.

The abstracted model Design Script is placed at the top of the design knowledge for a domain.

The major components of the DS are the goals, functions, and form of the part which is designed

(Fig. 2). These abstractions include how the goals are decomposed and passed to lower level

objects, how the functions of subparts are represented and used, and how explicit knowledge

about reasoning and transforming process are formed and used. The instances of design sub-part
can inherit these abstractions.

i

GOAL

G-ID
G-TYPE
G-CONTENTS
FUNCTION-G
CURRENT-F

_urtc

FUNCTION

F-ID
F-TYPE
F-CONTENTS

ExecNextFunc

DESIGN SCRIPT

NAME
JOB-ID
PART-OF
HAS-PARTS
GOAL
ATTRIBUTES

Geblglb-lnstance
AddAttr
_ght
GetAlUValue
_ue
CremeSubPart
Sell_
BuildStrct

ATTRIBUTE

TYPE
NAME
VALUE

Fig. 2. Main Structures of Design Script

Usually, the initial goal of the design object is represented using natural language rather than by

using a technical representation such as "'power amp can drive as low as 2-ohm impedance loud

speaker with 80 dB SPL." Then the goal is refined to the functions such as "require an amplifier
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which can provide 20A current at peak with at least 200 W/ch power." The functions of the

initial stage of the design process are regarded as goal of the next stage of design. The relations

between goal and its functions are acquired knowledge from the designer's point of view. When

a designer sets goals (or requirements) for the design object, the designer has what should be

required to meet the goals. Although, the relations between goals and functions are intrinsic

knowledge, they should be represented explicitly in the knowledge-based design process. The

Goal slot of DS will hold a bound instance of the Goal-Design class as a slot value. Each

instance of the Goal-Design class has its intrinsic functions kept as a multi-value slot to meet

current goals. The Attributes slot of DS is a multi-value slot which keeps all the design variables

and values for the design problem. DS provides various manipulation methods such as read-out

and write-in the value of the attribute, decomposing the design into sub-parts, and creating

instances of attributes and sub-parts. There always exist tradeoffs between generality and

efficiency. To improve the efficiency of the design system, it could be built as a very domain

specific. On the other hand, to make it general may require a sacrifice of efficiency. The DS has

been developed to be very general, in that it can be applicable to different design domains.

GENERALIZATION AND AGGREGATION

Generalization is a powerful abstraction that can share commonalties among classes. Usually the

generalization is represented as a superclass. The Design Scrip is a generalization of the design

process that is based on the hierarchical structure of engineering objects. Each subclass inherits

the features of its superclass. The inheritance mechanism of most object-oriented programming

languages is based on a sub-type or is-a relation between classes. The COOL of CLIPS is not an

exception. All the parts of a design object are represented as a subclass of DS so that they can

inherit the properties of DS by using the built-in is-a hierarchy relation. But, the hierarchy

relations among the parts themselves can not be represented by using is-a or kind-of relations,

because they are actually part-of hierarchies (Fig. 3). Aggregation is the h_-part or part-of

relationship in which objects are part of the whole assembly. For example, let's take an example

of a SO-8 package. We can say "'An S0-8 package is a kind of lC package.'" and "IC is a kind of

electronic component." ("SO-8" stands for "Small Outline 8 pin" and "IC" stands for "Integrated

Circuit") We can see the is-a hierarchy relations between an S0-8 package, 1C package, and

electronic component. If we build the hierarchical structure for S0-8, we can see that it is

composed of a mold material, a lead frame, wire bonds, etc. The lead frame is composed of

leadl, lead2, die pad, etc. The relationship between these parts can not be represented with is-a

relations. We can say the lead frame is not a type of SO-8, but a sub-part of the SO-8. So, in

order to express the design knowledge, a mechanism must be available to handle the part-of

relationship hierarchy. The slots PART-OF and HAS-PART of DS are used to define the part-of

relations relative to super and subparts of the part under consideration.

DESIGN KNOWLEDGE MANAGEMENT

Many design engineers have stressed the uselessness of unmodifiable design knowledge. If fixed

engineering design knowledge doesn't have a self-adaptive function for new situations, it may

not work properly in these cases. For our system, the DS needs to follow the syntax of CLIPS

when building a design knowledge base for a specific application design domain, because DS is

288



i i m

SO 8 PACKAGE

DESIGN SCRIPT[

Mold Material_

..........SUB-CLASS

-- AGGREGATION I ILead I

! -i
_U_=_

Lead Frame _ Wire Bond

I I I
Lead2 Lead8 DiePad

I

Chip

Fig. 3. Hierarchical Structure of SO8 IC Package and Design Script

implemented in CLIPS. The syntax of CLIPS is similar to that of the LISP language which uses

lots of parentheses. CLIPS uses prefix notation in numerical computations rather than infix

notation, which is generally used to represent algebraic expressions. If the developer is not

familiar with this type of environment, it could be difficult to build the knowledge base.

Considering that most design engineers are not computer scientists who can easily adapt to new

programming environments, a user interface for knowledge entry and building is provided as a

most essential part of the design system. The DS provides a GUI (Graphical User Interface)

empty form as part of its functionality (Fig. 4). The design knowledge can be built easily by

using the knowledge entry dialog-box on a part by part basis. What the designer has to do is fill

in each field of the dialog box with the necessary information for designing or analyzing the

object or subpart. It is an essential process to specify the design object in the hierarchical

structure before entering design knowledge. Each dialog-box can edit design knowledge for a

single (composite or elemental) part, such as its part-of and has-part relations, its goal, functions

of the goal, design attributes for the part, and its numerical methods to get the implicit values of

its design variables. When the user edits the dialog-box, the contents of the fields are stored

temporarily in instances of the KENTR¥ class. Because the purpose of the KENTRY class is to

provide an editable form of design knowledge that is easy to use, the contents of the design

knowledge are kept as text in the corresponding slot. Once this information is entered by the

user, it can be saved into a file in the form of instances of the KENTRY class from the main

menu. Later, the user can modify the design knowledge by loading a previously created version
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from the file. Whenever the user wants to run the design system with the current design

knowledge, he first compiles the knowledge from the instance form to the form of classes and

their message-handlers which are in CLIPS syntax.

EDIT IO40_n.ElX_

PARTd_AME
P_RT_
SU64_d_T
GOAL
FUNCD0flS
AI-rRIBUTES

I

FUNCdZEQ AITR4ETHOO

REQU_S
CONTENTS

Fig. 5. Knowledge Entry Class

DESIGN APPLICATION: LEAD-FRAME DESIGN FOR POFP

The DS has been applied in the domain of Lead-Frame design for a plastic quad flat pack IC

package (PQFP). Acquiring design knowledge for the lead-frame of a PQFP is not a simple

process. First of all, manufacturers tend to use their own knowledge to produce packages for

their chips. Moreover, each company wants to keep this knowledge as proprietary information.

There is available a limited amount of public design knowledge such as the standard package

outlines contained in the JEDEC Package Standard Outline, research paper [ 11 ], or handbooks

[19, 23]. This standard is widely used throughout the community of semiconductor

manufacturers. The JEDEC standard is just for the outside dimensions, such as body size, length

of outside lead, lead pitch, etc. The JEDEC manual doesn't refer to the inside dimensions of the

package. This limitation reveals one difficulty of standardization in the packaging world. The

major goal of the lead-frame design system for PQFP is to define the geometry of a lead-frame

which can satisfy the JEDEC standard and the electrical and mechanical design constraints.

Fig. 6 describes the design knowledge for a lead-frame in graphical format. The values of lead-

pitch, lead-width, and outside lead length are decided from JEDEC standard dimensions which

are stored in a JEDEC database. The size of the chip bonding pad is decided by reference to the

chip design technology base in use. The maximum wire span of the bonding wire from the

bonding pad on the chip to the lead tip of the lead-frame is 100 mil. The lead tip pitch is around

l0 mil. The width of the lead tip is around 6 mil. The length of the lead tip is dependent on its

position. Each lead has an anchor hole. The fineness of the lead tip is also limited by the sheet

metal blanking technology. The whole area of the metal part inside the plastic package is equal

to or a slightly less than half of the entire plastic area.
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Fig. 6. DesignKnowledgeforthe Lead-Frameof the PQFP.

When a user loads or edits the design knowledge using the Knowledge Entry dialog box and

compiles it, the design knowledge is translated into CLIPS syntax (Fig. 7.). The first part of the

knowledge is for the definition of LF-PQFP (Lead Frame of Plastic Quad Flat Pack) class

which has GOAL and HAS-PART slots. The default value of the GOAL slot is the name of an

instance of the GOAL-DESIGN class which has information about how to achieve the goal.

Another multi-value slot contains the name and number of the subpart class. The sub-part of the

lead-frame of the PQFP is composed of one die-bond-pad and the number of I/O leads in one

octant of the package.

(defclass LF-PQFP (is-a DESIGN-SCRIPT)
role concrete)

Islot GOAL (create-accessor reed-write)(default "LF-lstGoar'))
(slot WIRE-SPAN (create-accessor read-write)(default 100))
(multislot HAS-PART (create-accessor read-write)(default "DieBondPad" "Lead1" "Lead2"

"Lead3"... "Lead11"))
)

(message-handler LF-PQFP set-attributes0
(bind ?self-i (instance-name ?self))
{bind ?ins-name (symbol-to-instance-name (sym-cat
(make-instance ?ins-name of AN-ATTRIBUTE

(ATTR-NAME "LEAD-TIP-PITCH")

(value 0.254)) 9
(send ?self add-attr, ins-name)

?self-i "LEADTIPPITCH")))

message-handler LF-PQFP decide-Die-Size ()
bind ?SB (send ?serf get-attr-value (send ?serf get-attr-instance "Die-SB"))
bind ?Nio (send ?serf get-attr-value (send ?serf get-attr-instance "N-IO'))
bind ?Pd (send ?self get-ettr-value (send ?self get-attr-instance "PAD-PITCh'))
bind ?DieSize (+ (* 2 ?SB) (*?Pd (* 1 (I ?Nio 4)))))

send ?serf put-attr-value (send ?serf get-attr-instance "PAD-PITCH") ?DieSize)

Fig.7. CLIPSsyntax forthe ClassandMesssge-Handler.
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The reason for designing only an octant of I/O leads is that the geometry of the remaining leads

can be derived from this portion of the geometry by considering the symmetry of the lead-frame.

The next message-handler takes care of creating and storing the instances of the attribute. The

last message-handler is an example of a method used to decide the design value of the attribute.

A

Fig. 8. Design Result: Lead-Frame of an 84 pin PQFP

Figure 8 shows the lead-frame of an 84 pin PQFP that was created by running the above lead-

frame design system. The outer dotted square represents the plastic body of the PQFP and the

inner dotted square shows the minimum size of the chip. The figure is drawn using the GNU plot

program by providing the geometry that is produced by the lead-frame design system.

CONCLUSIONS AND FUTURE WORK

The main contribution of this research is in providing a general design-process control

framework and a general design-knowledge representation scheme for physical objects to be

designed using knowledge-based design systems. The Design Script developed here can be

applied in any design domain because it contains domain knowledge independent about the

design process. Usually, design is not only an individual activity but also requires cooperative

team work that involves a number of designers from different fields. To support cooperative

design work, DS provides an excellent framework that can be used in different domains. The

capability of DS has been demonstrated in the domain of leadframe design for PQFPs.

This work is a part of the ongoing project. Much remains to be done to enhance the functionality

of DS. Especially, management of design knowledge is a good candidate for future work. The

current knowledge entry process doesn't provide any debugging functions. The design

knowledge may be easily broken without careful knowledge entry. But there is also a need for a

version management method like RCS (Revision Control System) or Aegis to enhance the

productivity of cooperative design work. This enhancement is being considered to provide such

functionality to the DS.
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